Fusion-Reflection Self-Supervised Learning

نویسنده

  • Brandyn Jerad Webb
چکیده

By analyzing learning from the perspective of knowledge acquisition , a number of common limitations are overcome. Modeling efficacy is proposed as an empirical measure of knowledge, providing a concrete, mathematical means of “acquiring knowledge” via gradient ascent. A specific network architecture is described, a hierarchical analog of node-labeled Hidden Markov Models, and its evaluation and learning laws are derived. In empirical studies using a hand-printed character recognition task, an unsupervised network was able to discover n-gram statistics from groups of letter images, and to use these statistics to enhance its ability to later identify individual letters. Introduction In the pursuit of synthetic intelligence, the study of learning is of central importance. Many tasks which seem simple to us in fact require a vast hierarchy of knowledge. Consider the task of identifying a pictured animal: this first requires an implicit understanding of more fundamental concepts such as visual continuity, edges, orientation, depth, form, and the nature of identity itself—just to name a few. Not only does this represent a vast amount of knowledge, but our own understanding of some of the crucial concepts is still incomplete. Ideally, the study of learning will produce an adaptive intelligence that can discover these principles on its own, and perhaps even reveal them to us, rather than vice-versa. For an intelligent system to be capable of learning, aspects of its behavior must be modifiable. We can imagine the system as a black box with input, output, and set of modifiable, internal variables, or free parameters. These internal parameters determine the behavior of the box and can be envisioned as a set of controlling dials. Inside the box is some fixed algorithm, the evaluation law, which combines the input with the state of the dials to generate output. It is presumed that this algorithm is sufficiently robust that some configuration of the dials will produce the desired behavior. The goal of the learning law is to find this configuration. Consider, for instance, the name-that-animal problem. Upon unpacking our newly arrived ACME All-Purpose Black Box, we find its dials in a random configuration. After hooking a scanner to the box’s input and a printer to its output, we observe the expected: the box does no better than chance. In fact, it does worse, outputting “blblblblbl”—which is not an animal at all. How do we determine the configuration of dials that will make the box name-that-animal? The most direct approach is simply to compute the proper configuration, and set the dials. Doing this, however, requires an analytic solution to the particular evaluation law in question. Suppose, for example, we wish the box to light a bulb when it sees the word “idea”. If the box had four dials with settings from “a” to “z”, we could simply dial in i-d-e-a, and we would be done. On the other hand, if the evaluation law processed the input through some complex equation involving the dial settings, then there may be no straightforward, one-step method of determining a good configuration. In practice, the most flexible evaluation laws fall into the latter category, having no 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-supervised learning: When is fusion of the primary and secondary sensor cue useful?

Self-supervised learning (SSL) is a reliable learning mechanism in which a robot enhances its perceptual capabilities. Typically, in SSL a trusted, primary sensor cue provides supervised training data to a secondary sensor cue. In this article, a theoretical analysis is performed on the fusion of the primary and secondary cue in a minimal model of SSL. A proof is provided that determines the sp...

متن کامل

A Simple Algorithm for Adaptive Decision Fusion

Design of parallel binary decision fusion systems is often performed under the assumption that the decision integrator (the data fusion center, DFC) possesses perfect knowledge of the local-detector (LD) statistics. In most studies, other statistical parameters are also assumed to be known, namely the a priori probabilities of the hypotheses, and the transition probabilities of DFC-LD channels....

متن کامل

Nursing Students` Experiences of Narrative Writing- Reflection in Clinical Education: A Qualitative Study

  Introduction: Narrative writing- reflection is an effective method in health sciences students’ clinical education. This study aimed to explore nursing students’ experiences of narrative writing- reflection method in clinical education. Methods: This qualitative study was conducted using conventional content analysis approach in Baqiyatallah nursing faculty. Data were collected through six pe...

متن کامل

Self-organizing information fusion and hierarchical knowledge discovery: a new framework using ARTMAP neural networks

Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when evidence variously suggests that an object’s class is car, truck, or airplane. The methods de...

متن کامل

Self-organizing Hierarchical Knowledge Discovery by an ARTMAP Image Fusion System

Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when evidence variously suggests that an object’s class is car, truck, or airplane. The methods de...

متن کامل

Fusion of stereo and still monocular depth estimates in a self-supervised learning context

We study how autonomous robots can learn by themselves to improve their depth estimation capability. In particular, we investigate a self-supervised learning setup in which stereo vision depth estimates serve as targets for a convolutional neural network (CNN) that transforms a single still image to a dense depth map. After training, the stereo and mono estimates are fused with a novel fusion m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993